ClpX(P) Generates Mechanical Force to Unfold and Translocate Its Protein Substrates
نویسندگان
چکیده
AAA(+) unfoldases denature and translocate polypeptides into associated peptidases. We report direct observations of mechanical, force-induced protein unfolding by the ClpX unfoldase from E. coli, alone, and in complex with the ClpP peptidase. ClpX hydrolyzes ATP to generate mechanical force and translocate polypeptides through its central pore. Threading is interrupted by pauses that are found to be off the main translocation pathway. ClpX's translocation velocity is force dependent, reaching a maximum of 80 aa/s near-zero force and vanishing at around 20 pN. ClpX takes 1, 2, or 3 nm steps, suggesting a fundamental step-size of 1 nm and a certain degree of intersubunit coordination. When ClpX encounters a folded protein, it either overcomes this mechanical barrier or slips on the polypeptide before making another unfolding attempt. Binding of ClpP decreases the slip probability and enhances the unfolding efficiency of ClpX. Under the action of ClpXP, GFP unravels cooperatively via a transient intermediate.
منابع مشابه
ClpXP, an ATP-powered unfolding and protein-degradation machine.
ClpXP is a AAA+ protease that uses the energy of ATP binding and hydrolysis to perform mechanical work during targeted protein degradation within cells. ClpXP consists of hexamers of a AAA+ ATPase (ClpX) and a tetradecameric peptidase (ClpP). Asymmetric ClpX hexamers bind unstructured peptide tags in protein substrates, unfold stable tertiary structure in the substrate, and then translocate the...
متن کاملUnfolding and internalization of proteins by the ATP-dependent proteases ClpXP and ClpAP.
ClpX and ClpA are molecular chaperones that interact with specific proteins and, together with ClpP, activate their ATP-dependent degradation. The chaperone activity is thought to convert proteins into an extended conformation that can access the sequestered active sites of ClpP. We now show that ClpX can catalyze unfolding of a green fluorescent protein fused to a ClpX recognition motif (GFP-S...
متن کاملDissection of Axial-Pore Loop Function during Unfolding and Translocation by a AAA+ Proteolytic Machine.
In the axial channels of ClpX and related hexameric AAA+ protein-remodeling rings, the pore-1 loops are thought to play important roles in engaging, mechanically unfolding, and translocating protein substrates. How these loops perform these functions and whether they also prevent substrate dissociation to ensure processive degradation by AAA+ proteases are open questions. Using ClpX pore-1-loop...
متن کاملForce Generation: ATP-Powered Proteasomes Pull the Rope
Recently, single-molecule force spectroscopy techniques have provided unprecedented opportunities to apply and to quantify forces that guide protein (un-)folding. A new study provides fascinating insights into the sophisticated mechanism by which an ATP-fueled proteolytic machine generates mechanical forces to unfold and translocate multidomain substrates.
متن کاملClpX Shifts into High Gear to Unfold Stable Proteins
Protein degradation by the ClpXP protease requires collaboration among the six AAA+ domains of ClpX. Using single-molecule optical tweezers, Sen et al. show that ClpX uses a coordinated succession of power strokes to translocate polypeptides in ATP-tunable bursts before reloading with nucleotide. This strategy allows ClpX to kinetically capture transiently unfolded intermediates.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cell
دوره 145 شماره
صفحات -
تاریخ انتشار 2011